
2
SCRIPTS

So far we’ve typed all of our programs “at
the prompt.” If you’re only writing a few

lines, this isn’t so bad. But what if you’re
writing a hundred? Retyping each line of code

every time you want to change or test your program
will be time-consuming and tedious. Luckily, you
don’t have to. In this chapter, we’ll look at a way to
run many lines at once: scripts.

Your First Script

A script is a file that contains MATLAB code. When you run a script, MAT-
LAB executes the commands in it, one after another, exactly as if you had
typed them at the prompt. Scripts are also sometimes calledM-files because
they use the extension .m, short for MATLAB.

You can create scripts with any text editor or word processor, but the
simplest way is to click the New Script button in the upper-left corner of the
MATLAB interface, which opens a text editor designed for MATLAB.



To try it out, create a new script and enter the following code:

x = 5

Then press the Save button. A dialog window should appear where you
can choose the filename and the folder where your script will go. Change
the name to myscript.m and save it into any folder you like.

Now click the green Run button. You might get a message that says
the script is not found in the current folder. If so, click the button that says
Change Folder and it should run.

You can also run a script by typing its name in the Command Window
and pressing ENTER. For example, if you enter myscript, MATLAB should
execute your script and display the result:

>> myscript

x = 5

There are a few things to keep in mind when using scripts. First, you
should not include the extension .m when you run a script. If you do, you’ll
get an error message like this:

>> myscript.m

Undefined variable "myscript" or class "myscript.m".

Second, when you name a new script, try to choose something mean-
ingful and memorable. Don’t choose a name that’s already in use; if you do,
you’ll replace one of MATLAB’s functions with your own (at least temporar-
ily). You might not notice right away, but you might get some confusing be-
havior later.

Also, the name of the script cannot contain spaces. If you create a file
named my script.m, MATLAB will complain when you try to run it:

>> my script

Undefined function or variable 'my'.

It can be hard to remember which folder a script is in. To keep things
simple, for now, I suggest putting all of your scripts in one folder.

Why Scripts?
There are a few good reasons to use a script. When you’re writing more than
a couple of lines of code, it might take a few tries to get everything right.
Putting your code in a script makes it easier to edit than typing it at the
prompt. Likewise, if you’re running a script repeatedly, it’s much faster to
type the name of the script than to retype the code! And you might be able
to reuse a script from one project to the next, saving you considerable time
across projects.

But the great power of scripts comes with great responsibility: you have
to make sure that the code you are running is the code you think you are
running. Whenever you start a new script, start with something simple,

14 Chapter 2



like x = 5, that produces a visible effect. Then run your script and confirm
that you get what you expect. When you type the name of a script, MAT-
LAB searches for the script in a search path, which is a sequence of folders.
If it doesn’t find the script in the first folder, it searches the second, and so
on. If you have scripts with the same name in different folders, you could be
looking at one version and running another.

If the code you are running is not the code you are looking at, you’ll
find debugging a frustrating exercise! So it’s no surprise that this is the
Third Theorem of Debugging:

Be sure that the code you are running is the code you think you
are running.

Now that you’ve seen how to write a script, let’s use one to do something
a little more complicated.

The Fibonacci Sequence
The Fibonacci sequence, denoted F, is a sequence of numbers where each
number is the sum of the previous two. It’s defined by the equations F1 = 1,
F2 = 1, and, for i > 2, Fi = Fi–1 + Fi–2. The following expression computes the
nth Fibonacci number:

Fn =
1√
5

[(
1 +

√
5

2

)n

–

(
1 –

√
5

2

)n]

We can translate this expression into MATLAB, like this:

s5 = sqrt(5);

t1 = (1 + s5) / 2;

t2 = (1 - s5) / 2;

diff = t1^n - t2^n;

ans = diff / s5

I use temporary variables like t1 and t2 to make the code readable and
the order of operations explicit. The first four lines have a semicolon at the
end, so they don’t display anything. The last line assigns the result to ans.

If we save this script in a file named fibonacci1.m, we can run it like this:

>> n = 10

>> fibonacci1

ans = 55.0000

Before calling this script, you have to assign a value to n. If n is not de-
fined, you get an error:

>> clear n

>> fibonacci1

Undefined function or variable 'n'.

Scripts 15



Error in fibonacci1 (line 9)

diff = t1^n - t2^n;

This script only works if there is a variable named n in the workspace;
otherwise, you should get an error. MATLAB will tell you what line of the
script the error is in and display the line.

Error messages can be helpful, but beware! In this example, the mes-
sage says the error is in fibonacci, but the actual problem is that we have not
assigned a value to n. And that brings us to the Fourth Theorem of Debug-
ging:

Error messages tell you where the problem was discovered, not
where it was caused.

Often you have to work backwards to find the line of code (or missing
line) that caused the problem.

Floating-Point Numbers
In the previous section, the result we computed was 55.0000. Since the Fi-
bonacci numbers are integers, you might have been surprised to see the ze-
ros after the decimal point.

They are there because MATLAB performs calculations using floating-
point numbers. With floating-point numbers, integers can be represented ex-
actly, but most fractions cannot.

For example, if you compute the fraction 2/3, the result is only
approximate—the correct answer has an infinite number of 6s:

>> 2/3

ans = 0.6666

It’s not as bad as this example makes it seem: MATLAB uses more dig-
its than it shows by default. You can use the format command to change the
output format:

>> format long

>> 2/3

ans = 0.666666666666667

In this example, the first 14 digits are correct; the last one has been
rounded off.

Large and small numbers are displayed in scientific notation. For exam-
ple, if we use the built-in function factorial to compute 100!, we get the fol-
lowing result:

>> factorial(100)

ans = 9.332621544394410e+157

The e in this notation is not the transcendental number known as e;
it’s just an abbreviation for “exponent.” So this means that 100! is approx-

16 Chapter 2



imately 9.33 × 10157. The exact solution is a 158-digit integer, but with
double-precision floating-point numbers, we only know the first 16 digits.

You can enter numbers using the same notation.

>> speed_of_light = 3.0e8

speed_of_light = 300000000

Although the floating-point format can represent very large and small
numbers, there are limits. The predefined variables realmax and realmin con-
tain the largest and smallest numbers MATLAB can handle.

>> realmax

ans = 1.797693134862316e+308

>> realmin

ans = 2.225073858507201e-308

If the result of a computation is too big, MATLAB “rounds up” to
infinity.

>> factorial(170)

ans = 7.257415615307994e+306

>> factorial(171)

ans = Inf

Division by zero also returns Inf.

>> 1/0

ans = Inf

For operations that are undefined, MATLAB returns NaN, which stands
for “not a number.”

>> 0/0

ans = NaN

Comments
Short, simple programs are easy to read, but as they get bigger and more
complex, it gets harder to figure out what they do and how. That’s what
comments are for.

A comment is a line of text added to a program to explain how it works. It
has no effect on the execution of the program; it is there for human readers.
Good comments make programs more readable; bad comments are useless
at best and misleading at worst.

To write a comment, you use the percent symbol (%) followed by the
text of the comment.

Scripts 17



>> speed_of_light = 3.0e8 % meters per second

speed_of_light = 300000000

The comment runs from the percent symbol to the end of the line.
In this case it specifies the units of the value. In an ideal world, MATLAB
would keep track of units and propagate them through the computation,
but for now that burden falls on the programmer.

Avoid comments that are redundant with the code:

>> x = 5 % assign the value 5 to x

Good comments provide additional information that’s not in the code,
like units in the example above, or the meaning of a variable:

>> p = 0 % position from the origin in meters

>> v = 100 % velocity in meters / second

>> a = -9.8 % acceleration of gravity in meters / second^2

If you use longer variable names, you might not need explanatory com-
ments, but there’s a trade-off: longer variable names are clearer, but longer
code can become harder to read. Also, if you’re translating from math that
uses short variable names, it can be useful to make your program consistent
with your math.

Documentation
Every script should provide documentation, which is a comment that explains
what the script does and what its requirements are.

For example, I might put something like this at the beginning of fi-
bonacci1.m:

% Computes a numerical approximation of the nth Fibonacci number.

% Precondition: you must assign a value to n before running this script.

% Postcondition: the result is stored in ans.

A precondition is something that must be true when the script starts in
order for it to work correctly. A postcondition is something that will be true
when the script completes.

If there is a comment at the beginning of a script, MATLAB assumes it’s
the documentation for the script. So if you type help fibonacci1, you get the
contents of the comment (without the percent signs).

>> help fibonacci1

Computes a numerical approximation of the nth Fibonacci number.

Precondition: you must assign a value to n before running this script.

Postcondition: the result is stored in ans.

That way, scripts that you write behave just like predefined scripts. You
can even use the doc command to see your comment in the Help Window.

18 Chapter 2



Assignment and Equality
For beginning programmers, a common source of confusion is assignment
and the use of the equals sign.

In mathematics, the equals sign means that the two sides of the equa-
tion have the same value. In MATLAB, an assignment statement looks like a
mathematical equality, but it’s not.

One difference is that the sides of an assignment statement are not in-
terchangeable. The right side can be any legal expression, but the left side
has to be a variable, which is called the target of the assignment. So this is
legal:

>> y = 1;

>> x = y + 1

x = 2

But this is not:

>> y + 1 = x

y + 1 = x

|

Error: Incorrect use of '=' operator.

To assign a value to a variable, use '='.

To compare values for equality, use '=='.

In this case the error message is not very helpful. The problem here is
that the expression on the left side is not a valid target for an assignment.

Another difference between assignment and equality is that a mathe-
matical equality is true (or false) for all eternity; an assignment statement
is temporary. When you assign x = y + 1, you get the current value of y. If y
changes later, x does not get updated.

A third difference is that a mathematical equality is a statement that may
or may not be true. In mathematics, y = y + 1 is a statement that happens
to be false for all values of y. In MATLAB, y = y + 1 is a sensible and useful
assignment statement. It reads the current value of y, adds 1, and replaces
the old value with the new value.

>> y = 1;

>> y = y + 1

y = 2

When you read MATLAB code, you might find it helpful to pronounce
the equals sign as “gets” rather than “equals.” So x = y + 1 is pronounced
“x gets the value of y plus one.”

Chapter Review
This chapter presented scripts and suggested reasons to use them. We com-
puted elements of a Fibonacci sequence, but because we used floating-point
numbers, the results were sometimes only approximate. And we saw how to

Scripts 19



add comments to a program to document what it does and explain how it
works.

Here are some terms from this chapter you might want to remember.
AnM-file is a file that contains a script, which is a sequence of MAT-

LAB/Octave commands. The search path is the list of folders where the in-
terpreter looks for M-files.

A precondition is something that must be true when the script starts in
order for it to work correctly; a postcondition is something that will be true
when the script completes.

The target of an assignment statement is the variable on the left side.
Floating-point is a way to represent and store numbers in a computer.

Scientific notation is a format for typing and displaying large and small num-
bers; for example, 3.0e8 represents 3.0 × 108 or 300,000,000.

A comment is part of a program that provides additional information
about the program, but does not affect its execution.

In the next chapter, you’ll learn how to write programs that perform
repetitive tasks using loops.

Exercises
Before you go on, you might want to work on the following exercises.

Exercise 1
To test your understanding of assignment statements, write a few lines of
code that swap the values of x and y. Put your code in a script called swap.m
and test it.

If it works correctly, you should be able to run it like this:

>> x = 1, y = 2

x = 1

y = 2

>> swap

>> x, y

x = 2

y = 1

Exercise 2
Imagine that you are the operator of a bike-share system with two locations:
Boston and Cambridge.

You observe that every day 5 percent of the bikes in Boston are dropped
off in Cambridge, and 3 percent of the bikes in Cambridge get dropped off
in Boston. At the beginning of the month, there are 100 bikes at each loca-
tion.

20 Chapter 2



Write a script called bike_update.m that updates the number of bikes in
each location from one day to the next. The precondition is that the vari-
ables b and c contain the number of bikes in each location at the beginning
of the day. The postcondition is that b and c have been modified to reflect
the net movement of bikes.

To test your program, initialize b and c at the prompt and then execute
the script. The script should display the updated values of b and c, but not
any intermediate variables.

Remember that bikes are countable things, so b and c should always be
integer values. You might want to use the round function to compute the
number of bikes that move each day.

If you execute your script repeatedly, you can simulate the passage of
time from day to day (you can repeat a command by pressing the UP arrow
and then ENTER).

What happens to the bikes? Do they all end up in one place? Does the
system reach an equilibrium, does it oscillate, or does it do something else?

In the next chapter, we will see how to execute your script automatically
and how to plot the values of b and c over time.

Scripts 21




